Collisionless magnetic reconnection in space plasmas
نویسندگان
چکیده
*Correspondence: Rudolf A. Treumann, International Space Science Institute Bern, Hallerstrasse 6, CH-3012 Bern, Switzerland e-mail: [email protected] Magnetic reconnection, the merging of oppositely directed magnetic fields that leads to field reconfiguration, plasma heating, jetting and acceleration, is one of the most celebrated processes in collisionless plasmas. It requires the violation of the frozen-in condition which ties gyrating charged particles to the magnetic field inhibiting diffusion. Ongoing reconnection has been identified in near-Earth space as being responsible for the excitation of substorms, magnetic storms, generation of field aligned currents and their consequences, the wealth of auroral phenomena. Its theoretical understanding is now on the verge of being completed. Reconnection takes place in thin current sheets. Analytical concepts proceeded gradually down to the microscopic scale, the scale of the electron skin depth or inertial length, recognizing that current layers that thin do preferentially undergo spontaneous reconnection. Thick current layers start reconnecting when being forced by plasma inflow to thin. For almost half a century the physical mechanism of reconnection has remained a mystery. Spacecraft in situ observations in combination with sophisticated numerical simulations in two and three dimensions recently clarified the mist, finding that reconnection produces a specific structure of the current layer inside the electron inertial (also called electron diffusion) region around the reconnection site, the X line. Onset of reconnection is attributed to pseudo-viscous contributions of the electron pressure tensor aided by electron inertia and drag, creating a complicated structured electron current sheet, electric fields, and an electron exhaust extended along the current layer. We review the general background theory and recent developments in numerical simulation on collisionless reconnection. It is impossible to cover the entire field of reconnection in a short space-limited review. The presentation necessarily remains cursory, determined by our taste, preferences, and knowledge. Only a small amount of observations is included in order to support the few selected numerical simulations.
منابع مشابه
Measurements of impulsive reconnection driven by nonlinear Hall dynamics
Related Articles Kinetic simulations of the structures of magnetic island in multiple X line guide field reconnection Phys. Plasmas 19, 042111 (2012) Numerical simulations of separatrix instabilities in collisionless magnetic reconnection Phys. Plasmas 19, 042110 (2012) Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas Phys. Plasmas 19, 042303 (2012) Magnetic...
متن کاملبررسی شتابدهی ذرات باردار از طریق بازاتصالی مغناطیسی در محیطهای پلاسمایی
Magnetic reconnection, which occurs in high conducting plasmas, changes the topology of magnetic field lines and converts magnetic energy into the kinetic and thermal energy of plasma and also accelerates charged particles. This phenomenon plays an important role in changing the dynamic of laboratory and space plasmas such as fusion tokamaks and sun’s corona. The electric and magnetic fields ge...
متن کاملLessons on collisionless reconnection from quantum fluids
*Correspondence: Yasuhito Narita, Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, A-8042 Graz, Austria e-mail: [email protected] Magnetic reconnection in space plasmas remains a challenge in physics in that the phenomenon is associated with the breakdown of frozen-in magnetic field in a collisionless medium. Such a topology change can also be found in superfluid...
متن کاملDirect evidence for kinetic effects associated with solar wind reconnection
Kinetic effects resulting from the two-fluid physics play a crucial role in the fast collisionless reconnection, which is a process to explosively release massive energy stored in magnetic fields in space and astrophysical plasmas. In-situ observations in the Earth's magnetosphere provide solid consistence with theoretical models on the point that kinetic effects are required in the collisionle...
متن کاملDevelopment of a Turbulent Outflow During Electron-Positron Magnetic Reconnection
The mass symmetry between the two species in electron-positron (pair) plasmas has interesting consequences for collisionless magnetic reconnection because the Hall term, which plays a crucial role in supporting fast reconnection in electron-proton plasmas, vanishes. We perform kinetic simulations of pair reconnection in systems of various sizes, show that it remains fast, and identify the reaso...
متن کامل